Difference between revisions of "Projects:2015s2-206 Solar Aquaponics"

From Projects
Jump to: navigation, search
(Project Introduction)
(Project Introduction)
Line 23: Line 23:
 
----
 
----
 
Aquaponics combines aquaculture and hydroponics, which integrates raising fish and growing plants in one symbiotic system, where water in fish tanks that is rich in nutrients is used for plant growth. As an promising food production system, Recirculating Aquaculture Systems(RAS) has experienced rapid development in Europe and US in the early 20th and it’s gaining popularity within Australia where drought has making it very appealing as it uses 90 percent less water than conventional cultivation method(Diver, 2000). RAS provides better opportunity for recirculating water and management of waste processing and nutrient recycling. The key to success of aquaponics system relies on the symbiosis of fish, microorganisms and plants. Plants and fish species and ratio, hydroponic effluent water flow rate, solid removal efficiency (mechanical filter performance), nitrification efficiency (bio-filter performance), daily feed to fish, food conversion ratio (FCR), water and medium environment etc. are all of key concerns in establishing a complete aquaponics system.
 
Aquaponics combines aquaculture and hydroponics, which integrates raising fish and growing plants in one symbiotic system, where water in fish tanks that is rich in nutrients is used for plant growth. As an promising food production system, Recirculating Aquaculture Systems(RAS) has experienced rapid development in Europe and US in the early 20th and it’s gaining popularity within Australia where drought has making it very appealing as it uses 90 percent less water than conventional cultivation method(Diver, 2000). RAS provides better opportunity for recirculating water and management of waste processing and nutrient recycling. The key to success of aquaponics system relies on the symbiosis of fish, microorganisms and plants. Plants and fish species and ratio, hydroponic effluent water flow rate, solid removal efficiency (mechanical filter performance), nitrification efficiency (bio-filter performance), daily feed to fish, food conversion ratio (FCR), water and medium environment etc. are all of key concerns in establishing a complete aquaponics system.
 +
 
[[File:Aquaponics cycle.jpg]]
 
[[File:Aquaponics cycle.jpg]]
  

Revision as of 14:27, 19 May 2016


Project Team

Supervisors

Dr Rastko Zivanovic

Dr Said Al-Sarawi

Group Members

Haokun Wang

Mengna Xu


Project Introduction

Background


Aquaponics combines aquaculture and hydroponics, which integrates raising fish and growing plants in one symbiotic system, where water in fish tanks that is rich in nutrients is used for plant growth. As an promising food production system, Recirculating Aquaculture Systems(RAS) has experienced rapid development in Europe and US in the early 20th and it’s gaining popularity within Australia where drought has making it very appealing as it uses 90 percent less water than conventional cultivation method(Diver, 2000). RAS provides better opportunity for recirculating water and management of waste processing and nutrient recycling. The key to success of aquaponics system relies on the symbiosis of fish, microorganisms and plants. Plants and fish species and ratio, hydroponic effluent water flow rate, solid removal efficiency (mechanical filter performance), nitrification efficiency (bio-filter performance), daily feed to fish, food conversion ratio (FCR), water and medium environment etc. are all of key concerns in establishing a complete aquaponics system.

Aquaponics cycle.jpg



Project Scope





Motivation


Besides human labor, energy consumption can be the largest cost factor in RAS. The electricity consumption mainly comes from water pumps and air pumps running continuously or periodically for circulating water and aeration; resistive heaters to maintain water temperature for fish during winter; growing light for grow beds; infrastructure facilities such as box fans and computers for data monitoring. The energy consumption can be huge in commercial aquaponics. The project investigated a practical way of solar system design and energy supply to a scalable aquaponics system aims at optimising the conventional power supply by power grid.

Our project dedicating in investigation of solar energy supply in aquaponics system instead of connecting to conventional power grid. Power input and consumption in system, water circulation within RAS, fish and plants growing dynamics and nitrification cycle are modelled and monitored by AnyLogic stock and flow diagram and are integrated with in one dynamic system. pH sensor for water, ammonia sensor for growing medium and pyranometer for solar radiation measurement are applied in the real model. Data are recorded through wireless link to devices.

Software Development & Model Simulation





Mainboard Design



Subsystem & Simulation




Use of Model


Practical Model

System Construction




Plant & Fish





Test & Monitoring






Conclusion

Reference