Projects:2017s2-270 Reconfiguration on Multi-Agent Systems (Robots Systems)

From Projects
Revision as of 16:21, 2 June 2018 by A1701623 (talk | contribs)
Jump to: navigation, search

Content

Team Members

Supervisors

Introduction

Abstract


Team Members

Chenkai Xu

Yonghao Peng

Junbang Tian


Supervisors

Peng Shi

Cheng Chew Lim


Introduction

Formation reconfiguration is an important issue in coordinated control for multi-agent system. The multi-agent system needs to utilize different formations to accomplish diverse missions. The relative positions of agents need to be reconfigured when specific demand is given. There will be time and energy loss during the process of formation reconfiguration. Our project group works towards an autonomous multi-agent system made up of four ground robots to achieve the dynamically reconfiguration. In the process of formation reconfiguration, we use two-stage reconfiguration strategy to reduce the time consumption or the energy consumption. The objective of our project group is to make the reconfiguration process accurate and efficient. We expect to verify the feasibility of the two-stage reconfiguration strategy by simulation experiments and field tests and to improve the two-stage strategy so that it can be adapted to more complex situations.


Abstract

The objective of this project is to work towards an autonomous multi-agent system made up of ground robots to achieve to dynamically reconfigure to cope with changes in the formation specifications based on the distribution of the agents. Two-stage reconfiguration strategy is used to make agents find a specially designated formation between the accomplishment of the mission at the most recent formation and the issuance of the next reconfiguration command, which can be called as idle time, to reduce the time consumption or energy consumption. The specially designated formation is based on the fixed number of predefined formation configurations.

Formation control


Collision avoidance


Motion control

Logic figure.PNG


The project is divided into three main functions, formation control, collision, and motion control. Figure shows the logic figure of the Matlab system. The formation control is the first part of the system, it provides various shapes of formation, including coordinates points. In other words, it provides the final destination to the system. The collision avoidance plays an important role in this system, because it is the path planning part which means that the collision avoidance outputs real-time destination to the system. The camera provides real-time position to the collision avoidance. Then the algorithm gives the route from real-time position to final destination.