Projects:2014S1-35 Human Activity Recognition to Support Independent Living

From Projects
Revision as of 21:51, 9 October 2014 by A1635365 (talk | contribs) (Approach Description)
Jump to: navigation, search

This project aims to build a Hybrid RFID sensor tag which could renovate the way of tag-to-reader communications based on the Wireless Identification and Sensing Platform (WISP) 4.1 DL version developed by Intel Research Seattle.

Project information

The holistic goal of the Human Activity Recognition to Support Independent Living project is to determine if the use of privacy preserving radio-frequency identification technology and wireless sensor technology to detect patient activities can form the basis for a technological solution to support independent living, specifically, build a hybrid-semi-passive sensor tag which could renovate the way of tag-to-reader communications based on the Wireless Identification and Sensing Platform (WISP) 4.1 DL version.

A WISP is generally a sensing and computing device that is powered and read by a standard off-the-shelf RFID reader [1].

Currently, there are three common approaches to provide power and tag-to-reader communications. The first one is the passive sensor tag, it receives all its operating power from an RFID reader. It is battery-free but with short wireless communication distance and the requirement of proximity to RFID reader is high [2]. The second one is the semi-passive sensor tag, it uses batteries to run the chip’s circuitry, but communicates by drawing power from the reader. The last one is the active sensor tag, it provides long wireless communication distance but in the expense of high cost and low lifetime since it requires one-time batteries to power for the tag and radio.

Project Aims

An enhanced version of the sensor tag is proposed.

The individual aim of this project is to formulate, design and build a Battery Management Unit (BMU) capable of charging/discharging under different circumstances. The BMU shall be smart to decide when to use the battery to power the WISP and be charged by the UHF reader.

It is supposed to combine all the advantages from the current three types of sensor tags and achieve better overall performance with low power consumption. Longer communication distance and better life time shall be realized.

Outline of proposed work

  • Battery Test
  • Building Hybrid RFID Sensor Tags

Project Approach

Original WISP performance

WISPDV.png

  • The WISP communication and error rates as a function of RF attenuation and calculate distance.

Block Diagram

  • Origianl WISP

Original.png

The original WISP design block diagram with no battery.


  • Proposed Design

New.png

Our proposed design with Battery Management Unit (BMU). The external battery would be automatically charged and discharged under different distance between the RFID reader and the WISP corresponding to the output voltage.

Approach Description

As the WISP works under ultralow current(250uA), thus there will be a great possibility that the added Battery Management Unit (BMU) would absorb most of the current and kill the rest of the system normal operation. Therefore, the EnerChip CC series with integrated power management could be a sophisticated power solution as the heart of our design. Here we provide three different ultimate designs block diagrams:

  • Design 1

D1.png

The EnerChip CC CBC 3105 with external battery or supercapacitor, a voltage detector, a traslator and a voltage regulator. Note: By varying the R2 resistor in order to lower the threshold voltage to 2.2V.

  • Design 2

D2.png

The EnerChip CC CBC 3105 with external battery or supercapacitor, charge pump, a voltage detector, a traslator and a voltage regulator. Note: Set the threshold voltage to 3V, use an additional stage of the charge pump to charge the harvested voltage from the Analog Front End of the WISP to above 3V when the voltage greater than 2V.

  • Design 3

D3.png

The EnerChip CC CBC 3105 with external battery or supercapacitor, charge pump, analog switch, two voltage detectors and traslators, and a voltage regulator. Note: The BMU can automatically switch between different stages: when the voltage is between 2V and 2.5V, use the charge pump to boost up voltage and turn off the additional 1V voltage detector; when the voltage is above 2.5V, turn off the charge pump and the 1V additional voltage detector; when it goes below 2V, turn on the 1V additional voltage detector.

Testing Scenario

Our testing environment consists of an RFID reader and a sensor tag which is the WISP. We hold the tag and see whether if could be identified. The RFID reader sends a query to the tag and the tag returns an answer generally containing identifying information through Radio transmissions. The RFID reader sends the identifying information to our host computer, where it can be incorporated into a database to track objects and guide the activities of man and machines or revealed in human-readable form.

RFIDoverview.JPG

Technical Merits

  • Longer communication distance
  • Better power utilization
  • Good life time
  • Functionalities fully remained
  • Low cost
  • Ultra-small size

Design Performance

Team

Group members

  • Mr Yuchen Dong
  • Mr Han Xue

Supervisors

  • Dr Said Al-Sarawi
  • Dr Damith Ranasinghe

Resources

  • USB Key Debugger
  • RFID Reader, Antenna
  • Standard PC

References

  • [1] Intel Research Seattle, “WISP Wiki,” [Online] https://wisp.wikispaces.com (Accessed: 2 October 2014).
  • [2] A. P. Sample et al., “Design of an RFID-Based Battery-Free Programmable Sensing Platform,” IEEE Trans. Instrum. Meas., vol. 57, no. 11, pp. 2608 2615, Nov. 2008.
  • [3] Quick Introduction to RFID[Online], Available: http://www.polygait.calpoly.edu/tutorial.htm