Projects:2017s1-190 Modelling and Validation for Synchronous Generators
Contents
Team Members:
- Ainal Syazwan Itamta
- Binhao Li
- Xinrui Li
Supervisors:
- Dr. Andrew Allison
- David Vowels
Aim:
The aim of this project is to identify the dynamical parameters of the synchronous generators in NG06 Junior Lab. The model will be calibrated and verified via several specified tests on the machine. After that, the test procedures and designs specification will be documented.
Motivation:
The steady state characteristics of the synchronous generators are already well documented.However, the dynamical characteristics are required to be explored. Using these as guidelines, future students and academics can further analyze the synchronous machine in NG06 Junior Lab.
2017 Main Development:
1.Software Model of The Generator in Matlab:
The matlab software model of the generator is based on the book Small-signal stability, control and dynamic performance of power systems(https://www.adelaide.edu.au/press/titles/small-signal/), by Gibbard, Pourbeik and Vowles. The part is focus on the Small-signal models of synchronous generators in per-unit system. The purposes of the model is to do further reseach about verifying transient variables more specifically in d2q1 system(First Q-axis Damper Winding, Second D-axis Damper Winding), like winding magnet flux , field voltage , field current and so on. DQ tranform and FVT are widely used in this part.
2.Measurement of Rotor Angle Using Encoding Wheel:
By using the combination of code wheel (i.e. HEDS-6140#B13) and optical incremental quadrature encoder (i.e. HEDS-9040B00) together with DAQ board, our project group can accurately determine the rotational angle of the shaft in Lab View software. Rotor angle is significantly important. During normal operation of synchronous generators, stator magnetic field and rotor magnetic field rotate at the same speed but existing an angular difference between them and that depends on the power output. Based on this motivation, our group has selected the above two units and had them installed in NG06 lab. The output of encoder transmits to the DAQ board that illustrates the amount of rotational angle the shaft was travelling. By doing so, we are able to analyze the relations that involves the rotor angle and other quantities.
3.Lab-View and Data Acquisition (DAQ) Board:
Lab-View is a graphical programming language. In this project, a new Lab-View program is needed to capture several parameters in order to analyze the data. The way Lab-View capture the data is via the device that is called Data Acquisition (DAQ) Board. This device will capture the generated signal from installed sensors in the NG06 Lab.
The design of the Lab-View programming is to be able for the code to capture several parameters which are three-phase voltages, three-phase current, DC excitation field and Rotor angle. Since the maximum output voltage of the DAQ board is just 10 Volts, the value capture using the new program is in scaled value. Therefore, several methods are used to identified the scaled value of it. Besides that, the program is capable to capture 64 samples in 50 Hz frequency. In aspect of data saving method, it has the ability to save the data in a readable format (lvm) and the naming of the file is consistent.
There are several improvement that can be implemented in this Lab-View program. The details of the codes and its improvement are discussed in the thesis of this project.
Steady State Testing:
Steady state tests of synchronous machine are similar to the electrical energy system practical notes. The purpose of the tests is to determine several parameters at different machine operation condition. These test are open-circuit test, short-circuit test and slip test.
1. Synchronous Machine per-unit values :
Description Calculations Base value of 3 phase voltage V_rated=415 V (rms) Base value for current I_rated=10.5 A (rms) Base value of apparent power S_rated=(3(V_rated 〖*I〗_rated))/√3=7547.41 VA Rated impedance Z_rated=V_rated/(√3 I_rated )=22.82 Ω/phase Base value of real power P_rated=8HP=5880 W Power factor value 〖cosθ〗_rated=P_rated/S_rated =5880/7540=0.78 Rated Frequency 50 Hz Rated Speed 1500 rpm
References:
[1] F. P. D. Mello et al, “Derivation of synchronous machine parameters from tests”, IEEE Power Tech. Inc., Schenectady, NY, Rep. 4, 1977.
[2] T. Wildi, Electrical machines, drives, and power systems, 5th edition, New Jersey, Pearson Education Inc, 2006.
[3] D. Vowles, P. Pourbeik and M. Gibbard, “Small-signal stability, control and dynamic performance of power systems”. University of Adelaide Press, 2015.
[4] W. Soong and A. Allison, "EES lecture Note Package", 2016.
[5] Nesimi Ertugrul, "LabView for Electric Circuits, Machines, Drives and Laboratories", National Instruments, Prentice Hall PTR, 2002