Difference between revisions of "Projects:2015s1-71 Inductive Power Transfers"
Line 3: | Line 3: | ||
The aim of this project is achieving the inductive power transmission from a primary coil to a secondary coil, meeting at least 70% efficiency, through 500mm air gap and transferring 5W power to the receiver. Meanwhile, the size and weight of the inductive power transfer, which will be built, will also be minimized. | The aim of this project is achieving the inductive power transmission from a primary coil to a secondary coil, meeting at least 70% efficiency, through 500mm air gap and transferring 5W power to the receiver. Meanwhile, the size and weight of the inductive power transfer, which will be built, will also be minimized. | ||
In the end, the project aims to build an inductive power transfer which can successfully charges a mobile phone-sized device with above requirements. | In the end, the project aims to build an inductive power transfer which can successfully charges a mobile phone-sized device with above requirements. | ||
− | + | ||
== Motivation == | == Motivation == | ||
+ | The project being undertaken is because as the technology has developed very sharply recent years, many new types of devices are produced which leading to the situation that everyone has many equipments need to be charged every day. However, firstly the bunch of wires and cables are easily tied with each other which is annoying and bothered, secondly, the exposure wires may have chance to hurt people. Finally, the wires and cables are easier affected by the extreme weathers. Therefore, this project has been focused on cause if it is successfully achieved, it would makes the differences that the working environment which full of devices will be beautified and people would not be bothered by finding no public charger in public place anymore. Then the safety of people who use them would be ensured. Finally, the wireless technology is more stable. In addition, according to the huge demand on the inductive power transfer technology, it is not only focused by engineers, but also concentrated by many commercial companies because it is also a commercialized technology which can makes many benefits, specifically, Oskar Rönnbäck(2013) [9] describes that during the next 10 years, according to the evaluations, the wireless power could be a billion dollar industry. Therefore, it will plays a critical role in the future electric market. | ||
+ | == Significance == | ||
+ | Oskar Rönnbäck(2013) [9] illustrates that there are benefits can be obtained from the wireless power system. The first is the environmental benefit. If the global medium-range-wireless standard is met, all the mobile devices can be charged by one wireless system which means many charger would be saved and also the numbers of using batteries would be reduced. Secondly, the social benefit is that the charge zones will be established in many publics which is convenient for people who carries many chargers every day. | ||
− | + | == Background == | |
− | + | The inductive power transfer is a kind of wireless technology which is a electrical transmission from a power source to a receiving device without wires and cables between them. It is also belongs to the non-radiative technique which also called near-filed wireless power technology. Umenei, A. E. (June 2011) [14] illustrates that the energy of the primary coil stays at a short distance to the transmitter, when there is no secondary receiver arranged, the power would still around the transmitter rather than leaving it. Additionally, there are many applications we using in our daily life are under this technique such as electric toothbrush charger, electric vehicle charger, smartcard and so on. The wireless technology is one of the main advanced technology in the modern life, however it is an old technology. The inductive power transfer had been invented in 1800s when the transformer was developed (Oskar Rönnbäck 2013) [9]. | |
− | + | == Headline text == |
Revision as of 19:20, 15 October 2015
Aims
The aim of this project is achieving the inductive power transmission from a primary coil to a secondary coil, meeting at least 70% efficiency, through 500mm air gap and transferring 5W power to the receiver. Meanwhile, the size and weight of the inductive power transfer, which will be built, will also be minimized. In the end, the project aims to build an inductive power transfer which can successfully charges a mobile phone-sized device with above requirements.
Motivation
The project being undertaken is because as the technology has developed very sharply recent years, many new types of devices are produced which leading to the situation that everyone has many equipments need to be charged every day. However, firstly the bunch of wires and cables are easily tied with each other which is annoying and bothered, secondly, the exposure wires may have chance to hurt people. Finally, the wires and cables are easier affected by the extreme weathers. Therefore, this project has been focused on cause if it is successfully achieved, it would makes the differences that the working environment which full of devices will be beautified and people would not be bothered by finding no public charger in public place anymore. Then the safety of people who use them would be ensured. Finally, the wireless technology is more stable. In addition, according to the huge demand on the inductive power transfer technology, it is not only focused by engineers, but also concentrated by many commercial companies because it is also a commercialized technology which can makes many benefits, specifically, Oskar Rönnbäck(2013) [9] describes that during the next 10 years, according to the evaluations, the wireless power could be a billion dollar industry. Therefore, it will plays a critical role in the future electric market.
Significance
Oskar Rönnbäck(2013) [9] illustrates that there are benefits can be obtained from the wireless power system. The first is the environmental benefit. If the global medium-range-wireless standard is met, all the mobile devices can be charged by one wireless system which means many charger would be saved and also the numbers of using batteries would be reduced. Secondly, the social benefit is that the charge zones will be established in many publics which is convenient for people who carries many chargers every day.
Background
The inductive power transfer is a kind of wireless technology which is a electrical transmission from a power source to a receiving device without wires and cables between them. It is also belongs to the non-radiative technique which also called near-filed wireless power technology. Umenei, A. E. (June 2011) [14] illustrates that the energy of the primary coil stays at a short distance to the transmitter, when there is no secondary receiver arranged, the power would still around the transmitter rather than leaving it. Additionally, there are many applications we using in our daily life are under this technique such as electric toothbrush charger, electric vehicle charger, smartcard and so on. The wireless technology is one of the main advanced technology in the modern life, however it is an old technology. The inductive power transfer had been invented in 1800s when the transformer was developed (Oskar Rönnbäck 2013) [9].